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Abstract

We use asymptotic analysis to study the diffusion limit of the Symbolic Implicit Monte-Carlo (SIMC) method for the

transport equation. For standard SIMC with piecewise constant basis functions, we demonstrate mathematically that

the solution converges to the solution of a wrong diffusion equation. Nevertheless a simple extension to piecewise linear

basis functions enables to obtain the correct solution. We present numerical examples which illustrate the analysis.
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1. Introduction

Let us consider the following model transport equation for function ðx; ~XÞ ! uðx; ~XÞ:

~X � ~ruþ rtu ¼ rs
4p

R
S2

u d~Xþ Q;

uðx; ~XÞ ¼ g; x 2 C; ~X �~n < 0

(
ð1Þ

for x in some bounded domain D whose boundary is C and ~X is in the unit sphere S2 (~n ¼~nðxÞ denotes the
exterior normal vector to C at point x). Here ra is the absorption cross-section, rs the scattering cross-

section and rt ¼ rs þ ra the total cross-section, u the intensity.

This equation can be used as a model equation for neutron transport but we have in mind radiative

transfer applications. In this case the mean free path may be very small compared to some macroscopic
length scale. Following [4,10], it is then customary to introduce some small parameter e and to scale

cross-sections as
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rt !
rt

e
; ra ! era; Q ! eQ; ð2Þ

so that Eq. (1) becomes

~X � ~ruþ rt

e
u ¼ rt

e

�
� ra

� 1

4p

Z
S2

u d~Xþ eQ: ð3Þ

It is well known [5] that the limit of u at the zeroth order in e is solution of

�~r � 1
3rt

~ruþ rau ¼ Q;

uðx; ~XÞ ¼ 1
2p

R
~X�~n<0

ffiffi
3

p

2
j~X �~njHðj~X �~njÞgð~XÞ; x 2 C;

(
ð4Þ

where HðlÞ is Chandrasekhar�s function [11].

In this paper, we are interested in studying numerical schemes for system (1) which have the so-called

diffusion limit property, i.e. which gives a correct discretization of the diffusion equation (4) when the
scaling (2) is applied. A large amount of theoretical work has already been done to design deterministic

methods having the diffusion limit. Examples of such methods are the linear discontinuous finite element

method, the linear characteristic method and the SCB method [1,6,7]. They are able to treat, at the same

time, opaque and transparent regions. But they are still not widely used in three-dimensional problems

because of the number of cells involved in such calculations.

On the other end, Monte-Carlo methods are used in three dimensions for a long time because of their

simplicity and their ability to treat complex geometries. But an analysis of their behavior in optically thick

regions, i.e. when scaling (2) applies is still missing. Our goal is to apply the same kind of analysis that has
been performed for deterministic methods to a particular Monte-Carlo method: the Symbolic Monte-Carlo

method (SIMC) [3,9]. It consists in solving system

~X � ~ruþ rtu ¼ rtU;
�rs

1
4p

R
S2

u d~Xþ rtU ¼ Q;

(
ð5Þ

which is equivalent to (1) (with same boundary condition). In the SIMC method, after space discretization
the matrix which gives rt

1
4p

R
S2

u d~X, as a function of U in the first equation of (5), is computed. Replacing

rs
1
4p

R
S2

u d~X in the second equation of (5) leads to a linear system whose solution is U. One can prove the

equivalence, for this model equation, of the collision probability method [2] and the SIMC method. But the

SIMC method is mostly used for photonics to solve

ou
ot þ ~X � ~ruþ rtu ¼ rtU;

c oU
ot � rt

1
4p

R
S2

u d~Xþ rtU ¼ Q:

(
ð6Þ

The second equation in (6) is the electronic energy equation where U is the electronic temperature and c the
calorific capacity. This system takes a form analogous to (5) after discretizing oU=ot implicitly in time

ou
ot þ ~X � ~ruþ rtu ¼ rtU;

�rt
1
4p

R
S2

u d~Xþ ðrt þ c
DtÞU ¼ Qþ c U0

Dt :

(
ð7Þ

Thus, all the conclusions we can draw from the study of the SIMC method for solving (5) can be also

applied for solving (7). In radiation hydrodynamics problems, because of the complexity of the geometries

which can change in time and the dependency in time of u, the coefficients of the matrix are approximated

by using a particle method. In contrast, the collision probability method is mostly used in the field of
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neutronics. The equation which is solved is generally the steady state neutronics equation. Thus, the cal-

culation of the probability of collisions can be performed analytically.

We are concerned with the behavior of the SIMC method in optically thick regions. In such a region,
only the particles which travel between cells contribute to the matrix. It follows that a large amount of

particles are necessary to yield meaningful results. The question which arises is? If the number of particles is

sufficient to compute the matrix accurately, does the linear system correspond to a consistent discretization

of the diffusion equation. In other words, do we solve the right equation in the opaque region? We prove in

this paper that the original method gives a wrong solution in those regions and we improve the SIMC

method to obtain a consistent discretization of the diffusion equation. The difficulty of obtaining the correct

diffusion behavior with a Monte-Carlo method has been known for a long time (see [8] for a recent con-

tribution): we present a rigorous analysis of this weakness.
The paper is organized as follows. In the next section, we describe the Symbolic Monte-Carlo method for

piecewise constant basis functions as it was first introduced in [3,9] and how it can be extended to more

general basis functions. Then, we perform an asymptotic analysis on the numerical schemes to study the

diffusion limit. Finally, we illustrate the theoretical results with numerical simulations for one- and two-

dimensional geometry and present some numerical issues.
2. Extension of SIMC

In this section, we recall the main features of SIMC and describe its extension to higher order elements.

For simplicity, we first assume that the incoming intensity g is zero.

Let uðx; ~XÞ where x 2 D and ~X 2 S2 be the solution of the transport equation:

~X � ~ruþ rtu ¼ rtU;
�rs~uþ rtU ¼ Q;

�
ð8Þ

where ~uðxÞ ¼ ð1=4pÞ
R
S2

uðx; ~XÞ d~X. In the SIMC method, we generally look only for the integrated in-

tensity ~u: the angular variation of the solution of the transport equation is of little interest. Suppose the

domain D is discretized into N cells ðTiÞi2ð1;NÞ and that we have defined basis functions ðvliðxÞÞl2ð1;LÞ for each
cell Ti such that

XL
l¼1

vliðxÞ ¼ 1x2Ti ; vliðxÞvl
0

i0 ðxÞ ¼ 0 for i 6¼ i0:

We can express U as

UðxÞ ¼
X
i;l

/l
iv

l
iðxÞ: ð9Þ

We approximate (8) by the following system:

~X � ~ruþ rtu ¼ rtU;
h�rs~uþ rtU� Q; vlii ¼ 0 8i 2 ð1;NÞ; 8l 2 ð1; LÞ;

�
ð10Þ

where h; i is the scalar product in L2ðDÞ, i.e. we look for a weak solution of system (8) in a discontinuous

finite element space. For simplicity, throughout the paper, we will use the same notation for the exact

solution u and the approximate solution. Thanks to the linearity of (10) with respect to U, the solution of

(10) can be expressed as



296 J.-F. Clou€et, G. Samba / Journal of Computational Physics 195 (2004) 293–319
uðx; ~XÞ ¼
X
i;l

/l
i u

l
iðx; ~XÞ; ð11Þ

where function uliðx; ~XÞ is solution of

~X � ~ruli þ rtuli ¼ rtvli ;
uliðx; ~XÞ ¼ 0; x 2 C; ~X �~n < 0:

(
ð12Þ

The boundary condition is equivalent to uliðx; ~XÞ ¼ 0; x 2 Ci; ~X �~n < 0 where Ci is the boundary of cell Ti.
Putting expansions Eqs. (9), (11) into system (10) leads to

~X � ~ruli þ rtuli ¼ rtvli ;P
i;lðb

l;l0

i;i0 � al;l
0

i;i0 Þ/
l
i ¼ hQ; vl0i0 i 8i0 2 ð1;NÞ; 8l0 2 ð1; LÞ;

uliðx; ~XÞ ¼ 0; x 2 C; ~X �~n < 0;

8>><
>>: ð13Þ

where we have denoted al;l
0

i;i0 ¼ hrs~uli ; v
l0
i0 i and bl;l

0

i;i0 ¼ hrtvli ; v
l0
i0 i.

The system (13) is solved in three steps. First, we look for solution of Eqs. (12) for all indices ði; lÞ.
Actually, because we do not look for a detailed description in angle of uli but only for the integrated

quantity al;l
0

i;i0 , a particle method is well appropriate (see below). Then, knowing the matrices

A ¼ ðal;l0i;i0 Þ16 i;i0 6N ;16 l;l0 6L and B ¼ ðbl;l0i;i0 Þ16 i;i0 6N ;16 l;l0 6 L, we solve the linear system whose unknowns are /l
iX

i;l

ðbl;l0i;i0 � al;l
0

i;i0 Þ/
l
i ¼ hQ; vl0i0 i 8i0; l0: ð14Þ

This gives U by (9) and finally we deduce ~u ¼ ðrtU� QÞ=rs.
If instead of ~u some other quantity G is needed (such as uðx; ~XÞ for some particular point x0 and some

particular direction ~X0), it is necessary to compute during the tracking of the particles the linear operator

which relies G to U: once U is known G is simply obtained by a scalar product.

Taking into account a non-zero boundary condition g simply leads to the introduction of a second

auxiliary function ub, solution of

~X � ~rub þ rtub ¼ 0;
ubðx; ~XÞ ¼ g; x 2 C; ~X �~n < 0;

�
ð15Þ

and the right-hand term of linear system (14) hQ; vl0i0 i is replaced by hQþ rsub; vl
0
i0 i (see [9] for details).

In the original SIMC method, U was supposed to be constant by cell for each cell Ti, i.e. L ¼ 1 and

v1i ðxÞ ¼ 1x2Ti . In the improved SIMC method, U is supposed to be piecewise linear for each cell and dis-

continuous:

• For one-dimensional problems, there are two basis functions on each cell

Ti ¼ ½xi�1=2; xiþ1=2� : v1i ðxÞ ¼
xiþ1=2 � x

xiþ1=2 � xi�1=2

and v2i ðxÞ ¼
x� xi�1=2

xiþ1=2 � xi�1=2

:

Thus, /1
i is the value of U in the cell Ti for xi�1=2 and /2

i the value for xiþ1=2.

• For two-dimensional problems, we choose triangular cells and there are three basis functions on each cell

T . Basis function vli is the polynomial of degree one in x; y whose value is 1 on the vertex l and 0 on the

others and /l
i is the value of U on this vertex.

• For three-dimensional problems, cells are tetrahedrons, there are four basis function for each cell. Basis

function vli is the polynomial of degree one in x; y; z whose value is 1 on the vertex l and 0 on the others
and /l

i is the value of U on this vertex.
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For completeness, we briefly describe the particle method which is used for computing the matrices A
and B.

For each cell i, we solve (12) at the same time for all l 2 f1; Lg. The source term is sampled with P
particles in each cell, their direction Xp is uniform on S2 and their birth place xpð0Þ uniform on Ti. The
sample may be random or deterministic. To each particle p is associated a weight xpð0Þ ¼ ð1=P ÞrtVi , where
Vi is the volume of the cell i. Actually, each particle represents L particles whose weights are xl

pð0Þ ¼
xpð0Þvliðxpð0ÞÞ. This particle is called a symbolic particle because we do not know at this stage its ‘‘true’’

weight xl
p/

l
i . During the sampling, we compute by Monte-Carlo integration the scalar products bl;l

0

i;i0

bl;l
0

i;i0 ¼
1

P
rtVi

X
p

vliðxpð0ÞÞvl
0

i0 ðxpð0ÞÞ:

Each particle p travels at unit speed with direction Xp through the mesh. When a distance lp is traveled in

cell Ti0 , the weight is decreased by the attenuation factor e�rtlp and the matrix estimator al;l
0

i;i0 is incremented:

xp ! xpe
�rtlp ;

al;l
0

i;i0 ! al;l
0

i;i0 þ xp

R lp
0
rtvl

0
i0 ðxpðsÞÞe�rts ds:

Notice that the sum of all contributions to the matrix term is just the loss of weight of the particle p

xp

XL
l0¼1

Z lp

0

rtv
l0

i0 ðxpðsÞÞrte
�rts ds ¼ xpð1� e�rtlpÞ:

We can compute analytically the increment for al;l
0

i;i0 . Supposing that the particle p travels from A to B
through Ti, we obtainZ lp

0

rtv
l0

i0 ðAþ ~XpsÞe�rts ds ¼ ½�e�rtsvl
0

i0 ðAþ ~XpsÞ�lp0 þ
Z lp

0

~Xp � ~rvl
0

i0 ðAþ ~XpsÞe�rts ds;

¼ � vl
0

i0 ðBÞe�rtlp þ vl
0

i0 ðAÞ þ
1� e�rtlp

rt

~Xp � ~rvl
0

i0 ;

where we have used the fact that rvl
0
i0 is a constant vector for each cell Ti. For different kind of cells a

numerical integration would be necessary.
3. Diffusion limit of SIMC

In this section, we study the diffusion limit of SIMC, first for standard SIMC (i.e. basis functions are

piecewise constant) and then for extended SIMC (i.e. basis functions are piecewise linear). The technique,

which was first introduced in [4], consists in performing an asymptotic analysis of the numerical scheme

under the scaling (2). Let ue be the solution of the scaled numerical scheme. We will obtain the numerical

scheme satisfied by ue to first order with respect to e. If this is a correct discretization of the diffusion

equation (4) then we will say that SIMC has the diffusion limit.

Notice that all expansions that will be presented are formal expansions and that we will not give any

bounds on high order error terms.
In this section, we will restrict ourselves to zero-boundary conditions.
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We begin with the following lemma which will be used throughout this section.

Lemma 1. Let C be the part of the boundary of some cell and S0 some subdomain of S2. Let F and L be two

bounded non-negative functions defined on C�S0 and consider the integral

CTðeÞ ¼
Z
C
dc
Z
S0

d~XF ðc; ~XÞ exp
 

� rtLðc; ~XÞ
e

!
:

i(i) For one-dimensional problems, if there exists some constant c > 0 such that Lðc; ~XÞ > c for all ðc; ~XÞ: then
CT ðeÞ goes exponentially to zero as e goes to zero.

(ii) In dimension D (D ¼ 2 or D ¼ 3), if Lðc; ~XÞ is zero only for some c0 and Lðc; ~XÞ � C0ð~XÞjc� c0j for c close
to c0: then

CTðeÞ ¼ C
e
rt

� �D�1

þOðeDÞ

for some constant C

C

 
¼ jCj

Z
S0\fC0ð~XÞ<1g

F ðc0; ~XÞ
C0ð~XÞ

d~X in two dimensions

!
:

Lðc; ~XÞ is the distance from point c on the boundary C to another point c0 on C such that c0c
�!

is collinear

with ~X. CT will be called a corner term.

Proof. In one-dimensional problem, we have, for some positive constant c,

0 < CTðeÞ <
Z
S0

f ðlÞe�
rtc
ejlj dl

and this term is obviously exponentially decaying.

In two dimensions, we introduce a parametric coordinate cðsÞ on C such that cð0Þ ¼ c0. Then

CTðeÞ ¼ jCj
Z 1

0

ds
Z
S0

F ðcðsÞ; ~XÞ exp
 

� rtLðcðsÞ; ~XÞ
e

!
d~X:

Since Lðc; ~XÞ is zero only for c0 there exists some positive values L0 > 0 and s0 > 0 such that for s > s0 we
have LðcðsÞ; ~XÞ > L0. We deduce that

CTðeÞ ¼ jCj
Z s0

0

ds
Z
S0

F ðcðsÞ; ~XÞ exp
 

� rtC0ð~XÞjcðsÞ � c0j
e

!
d~XþOðe�1

eÞ

¼ jCj
Z
S0

F ðc0; ~XÞ
Z s0

0

exp

  
� rtC0ð~XÞs

e

!
ds

!
d~Xð1þOðs0ÞÞ þOðe�1

eÞ:

Integrating by parts we have

Z s0

0

exp

 
� rtC0ð~XÞs

e

!
ds � e

r C ð~XÞ
þO

e
s0

� �
;

t 0



J.-F. Clou€et, G. Samba / Journal of Computational Physics 195 (2004) 293–319 299
hence

CTðeÞ � jCj e
rt

Z
S0\fC0ð~XÞ<1g

F ðc0; ~XÞ
C0ð~XÞ

d~X:

In three dimensions, we introduce a parametric coordinate cðs; tÞ on C such that cð0; 0Þ ¼ c0. This leads
to

CTðeÞ � C0
Z
S0

F ðc0; ~XÞ
Z s0

0

Z t0

0

exp

  
� rtC0ð~XÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ t2

p

e

!
ds dt

!
d~X

for some constant C0 coming from the change of variable. Using polar coordinates, we obtainZ s0

0

Z t0

0

exp

 
� rtC0ð~XÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ t2

p

e

!
ds dt � 2pe2

rtC0ð~XÞ

and we conclude as in the two-dimensional case. �

3.1. Standard SIMC

In this case, we denote vliðxÞ ¼ viðxÞ ¼ 1x2Ti . We shall prove the following proposition.

Proposition 1. At the lowest order with respect to e, ue is solution of the linear system

1

4

Z
Ci

dc

� �
uei �

1

4

X
i0

Z
Ci0
i

dcuei0 ¼ ehQ; vii; ð16Þ

where ue ¼
P

i u
e
iv, Ci is the boundary of cell Ti and Ci0

i is the common edge of adjacent cells Ti and T 0
i .

We deduce immediately from this result that standard SIMC does not satisfy the diffusion limit property

because (16) is not a correct discretization of the diffusion equation (4) (with zero boundary condition).

Proof. Using the scaling (2), linear system (14) becomesX
i

ðbei;i0 � aei;i0 Þ/
e
i ¼ ehQ; vi0 i; ð17Þ

with

bei;i0 ¼
hrtvi; vi0 i

e
¼ di

0

i

rt

e
Vi ;

aei;i0 ¼
rt

e

�
� era

�
h~uei ; vi0 i

and uei is solution of

~X � ~ruei þ rt
e u

e
i ¼ rt

e vi;

uei ðx; ~XÞ ¼ 0; x 2 Ci; ~X �~n < 0:

(
ð18Þ

We integrate this equation with respect to ~X and take the scalar product with vi0
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rt

e
h~uei ; vi0 i ¼

rt

e
hvi; vi0 i �

1

4p

Z
Ci0

dc
Z
S2

d~Xð~X �~nÞuei ðc;XÞ: ð19Þ

We shall now replace uei by its expression. Eq. (18) reduces to an ordinary differential equation which has to

be solved along each characteristic starting from the boundary C with direction X. We will consider four

distinct cases:

(1) Ti ¼ Ti0 . For x 2 Ti, we have

uei ðx; ~XÞ ¼
Z liðx;~XÞ

0

rt

e
exp

n
� rt

e
ðliðx; ~XÞ � sÞ

o
viðx� ~XsÞ ds; ð20Þ

where the point x� ~Xliðx; ~XÞ is at the intersection of the boundary Ci of Ti with the half-line starting from x
with direction �~X (see Fig. 1) and liðx; ~XÞ is the distance between x and the boundary Ci in the direction X.
In order to simplify the notations we shall only write li instead of liðx; ~XÞ (this simplification will be made

throughout the paper). With viðxÞ ¼ 1x2Ti , we obtain

uei ðx; ~XÞ ¼ 1� e�
rt
e li : ð21Þ

We notice that uei ðc; ~XÞ ¼ 0 for c 2 Ci and ~X �~n < 0 so that replacing ui by its expression (21) into (19), we

obtain
rt

e
h~uei ; vii ¼

rt

e
hvi; vii �

1

4p

Z
Ci

dc
Z
~X�~n>0

d~Xð~X �~nÞð1� e�
rt
e liÞÞ

¼ rt

e
hvi; vii �

1

4

Z
Ci

dcþ CTðeÞ

with

CTðeÞ ¼ 1

4p

Z
Ci

dc
Z
~X�~n>0

dXð~X �~nÞe�
rt
e li :
Fig. 1.
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Using Lemma 1, we obtain

a�i;i ¼
rt
e � era

� 	
rt
e

rt

e
hvi; vii

�
� 1

4

Z
Ci

dcþ CTðeÞ
�

¼ rt

e

�
� era

�
Vi �

1

4

Z
Ci

dcþ CTðeÞ þOðe2Þ:

Finally,

bei;i0 � a�i;i ¼
1

4

Z
Ci

dcþ eraVi þ CTðeÞ þOðe2Þ: ð22Þ

(2) i 6¼ i0 and cells Ti and Ti0 have a common edge Ci0

i . For x 2 Ti0 , we have

uei ðx; ~XÞ ¼ uei ðxCi0
i
; ~XÞe�

rt
e li0 ; ð23Þ

where the point xCi0
i
is at the intersection of the boundary Ci0

i with the half-line starting from x with direction

�X and li0 ¼ li0 ðx;XÞ is the distance between that point and x (see Fig. 2). Using (20), we get

uei ðx; ~XÞ ¼ ð1� e�
rt
e liÞe�

rt
e li0 ; ð24Þ

where li ¼ liðx;XÞ is the distance between xCi0
i
and the opposite boundary of Ti in the direction X. Using (19)

and using the fact that hvi; vi0 i ¼ 0 because i 6¼ i0 we obtain

rt

e
h~uei ; vi0 i ¼ � 1

4p

Z
Ci0

dc
Z
~X�~n>0

d~Xð~X �~nÞð1� e�
rt
e liÞe�

rt
e li0 � 1

4p

Z
Ci0

dc
Z
~X�~n<0

d~Xð~X �~nÞð1� e�
rt
e liÞe�

rt
e li0 :

ð25Þ

When the direction ~X is entering the cell (~X �~n < 0), we have uei ðc; ~XÞ ¼ 0 except for c 2 Ci0

i and then

li0 ¼ li0 ðc; ~XÞ ¼ 0. When ~X is leaving the cell (~X �~n > 0), we have uei ðc; ~XÞ ¼ 0 except for c 2 Ci0 � Ci0

i . Hence

rt

e
h~uei ; vi0 i ¼ � 1

4p

Z
Ci0 �Ci0

i

dc
Z
~X�~n>0

d~Xð~X �~nÞð1� e�
rt
e liÞe�

rt
e li0 � 1

4p

Z
Ci0
i

dc
Z
~X�~n<0

d~Xð~X �~nÞð1� e�
rt
e liÞ

¼ 1

4

Z
Ci0
i

dcþ CT1ðeÞ þ CT2ðeÞ: ð26Þ
Fig. 2.
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With

CT1ðeÞ ¼ � 1

4p

Z
Ci0 �Ci0

i

dc
Z
~X�~n>0

d~Xð~X �~nÞð1� e�
rt
e liÞe�

rt
e li0 ;

CT2ðeÞ ¼ þ 1

4p

Z
Ci0
i

dc
Z
~X�~n<0

d~Xð~X �~nÞe�
rt
e li :

We can apply Lemma 1 to the corner terms CT1 and CT2. Finally,

a�i;i0 ¼
rt
e � era

� 	
rt
e

1

4

Z
Ci0
i

dc

 
þ CT1ðeÞ þ CT2ðeÞ

!

¼ 1

4

Z
Ci0
i

dcþ CT1ðeÞ þ CT2ðeÞ þOðe2Þ:

(3) i 6¼ i0 and cells Ti and Ti0 have no common vertex. It is easy to see that a�i;i0 is exponentially decaying

with respect to 1
e so that we can neglect these contributions to the linear system.

(4) i 6¼ i0 and cells Ti and Ti0 have a common vertex but no common edge. Then aei;i0 itself is a corner term

and Lemma 1 applies. For example, suppose that a cell Tj is adjacent to Ti and Ti0 , then, for x 2 Ti0 , we have

uei ðx; ~XÞ ¼ e�
rt
e li0 e�

rt
e ljð1� e�

rt
e liÞ;

thus aei;i0 is a corner term corresponding to particles emitted in Ti, crossing a distance lj ¼ ljðx; ~XÞ in Tj and a

distance then li0 ¼ li0 ðx; ~XÞ in Ti0 (Fig. 3):

aei;i0 ¼ � 1

4p

Z
~X�~n<0

d~X
Z
Cj
i0

dcð~X �~nÞe�
rt
e ljð1� e�

rt
e liÞ � 1

4p

Z
~X�~n>0

d~X
Z
Ci0 �Cj

i0

dcð~X �~nÞe�
rt
e li0 e�

rt
e ljð1� e�

rt
e liÞ:

Linear system (14) can finally be rewritten as

1

4

Z
Ci

dc

�
þ eraVi þ CTiðeÞ

�
/e

i �
1

4

X
i0; common edge with i

Z
Ci0
i

dc/e
i0 þ

X
i00; common vertex with i

CTi;i00 ðeÞ/e
i00 þOðe2Þ

¼ ehQ; vii;
Fig. 3.
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where CTi;i0 ðeÞ are corner terms. We now introduce the following formal expansion

Ue ¼ U0 þ eU1 þ e2U2 þ � � � ;
/e

i ¼ /0
i þ e/1

i þ e2/2
i þ � � � 8i 2 ð1;NÞ:

At the lowest order we obtain

1

4

Z
Ci

dc

� �
/0

i �
1

4

X
i0

Z
Ci0
i

dc/0
i0 ¼ 0:

We can easily prove that this linear system has a unique solution up to a constant. Consider the cor-

responding matrix M ¼ ðmii0 Þ with mii ¼ 1
4

R
Ci
dc and mii0 ¼ � 1

4

P
i0
R
Ci0
i
dc. This is a singular matrix since

mii þ
P

i0 6¼i mii0 ¼ 0 but its kernel reduces to constant vectors: if v is a vector in the kernel then we have, for

each component vi ¼
P

j 6¼i aijvj with 0 < aij < 1 so each component is in the interior convex set of the others

which is not possible unless they are all equal.

We deduce that U0 ¼ 0 since the Dirichlet boundary condition is U ¼ 0 at the boundary. At order e we
have

1

4

Z
Ci

dc

� �
/1

i �
1

4

X
i0

Z
Ci0
i

dc/1
i0 ¼ hQ; vii � raVi/

0
i þ

X
i0

CTi;i0 ð0Þ/0
i0 :

(corner terms actually only appear in two-dimensional problems and CTi;i0 ð0Þ ¼ lime!0ðCTi;i0 ðeÞ=eÞ). As

/0
i ¼ 0, equation for U1 reduces to

1

4

Z
Ci

dc

� �
/1

i �
1

4

X
i0

Z
Ci0
i

dc/1
i0 ¼ hQ; vii:

As U � eU1, we deduce that the equation satisfied by U at the lowest order is simply

1

4

Z
Ci

dc

� �
/i �

1

4

X
i0

Z
Ci0
i

dc/i0 ¼ ehQ; vii:

Second equation of the linear system with the scaling (2) writes as

rt

e

�
� era

�
ue � rt

e
Ue ¼ �eQ

so that ue ¼ Ue þOðe2Þ which ends the proof. �

For example, in one-dimensional geometry with uniform mesh, we obtain:

� 1

4
/e

i�1 þ
1

2
/e

i �
1

4
/e

iþ1 ¼ eQDx; ð27Þ

with / ¼ 1 ¼ /N ¼ 0 (zero boundary condition). This is a consistent discretization of

� o2U
ox2

¼ KQ;

with K ¼ 4e=Dx, instead of the correct equation

� 1

3ðrs þ raÞ
o2U
ox2

þ raU ¼ Q:



304 J.-F. Clou€et, G. Samba / Journal of Computational Physics 195 (2004) 293–319
3.2. Linear SIMC

Proposition 2. At the lowest order with respect to e, ue is solution of the linear system

ra

X
j0
hnj; nj0 iuej0 þ

1

3rt

X
j0
hrnj � rnj0 iuej0 ¼ hQ; nji; ð28Þ

where ue ¼
P

j u
e
jnj, and nj is the piecewise linear function which value is 1 on vertex cj and 0 on other vertices.

This is a correct discretization of the diffusion equation (4) (with zero boundary condition) with linear

continuous finite elements: hence extended SIMC satisfies the diffusion limit property.

Proof. We will give the proof only in the two-dimensional case because this is the only one where corner

terms matter: one and three-dimensional cases follow simply. We shall denote by ðcki Þk¼1;2;3 the three vertices

of cell Ti: cli is the vertex such that vliðcliÞ ¼ 1.
Using the scaling (2), linear system (14) becomesX

i;l

ðbe;l;l0i;i0 � ae;l;l
0

i;i0 Þ/e;l
i ¼ ehQ; vl0i0 i; ð29Þ

with

be;l;l
0

i;i0 ¼ hrtvli ; v
l0
i0 i

e
;

ae;l;l
0

i;i0 ¼ rt

e

�
� era

�
h~ue;li ; vl

0

i0 i

and ue;li is solution of

~X � ~rue;li þ rt
e u

e;l
i ¼ rt

e v
l
i ;

ue;li ðx; ~XÞ ¼ 0; x 2 Ci; ~X �~n < 0:

(

We integrate this equation with respect to ~X and take the scalar product with vl
0
i0

rt

e
h~ue;li ; vl

0

i0 i ¼
rt

e
hvli ; vl

0

i0 i þ
1

4p

Z
S2

d~Xh~Xue;li ;rvl
0

i0 i �
1

4p

Z
Ci0

dc
Z
S2

d~Xð~X �~nÞue;li ðc;XÞvl0i0 ðcÞ: ð30Þ

We shall now replace ue;li by its expression. As before, we will consider four distinct cases:

(1) Ti ¼ Ti0 . We start from expression (20) which is still valid and perform an integration by parts, using

the fact that rvli is constant over triangle Ti

ue;li ðx; ~XÞ ¼ vliðxÞ � vliðx� ~XliÞe�
rt
e li � e

rt

ð~X:rvliÞð1� e�
rt
e liÞ; ð31Þ

where the point x� ~Xli is at the intersection of the boundary Ci of Ti with the half-line starting from x with
direction �~X (see Fig. 1). Replacing ue;li by its expression into (30) we obtain

rt

e
h~ue;li ; vl

0

i i ¼
rt

e
hvli ; vl

0

i i þ
1

4p

Z
S2

d~XhvliðxÞ; ~X � rvl
0

i i �
1

4p

Z
S2

d~Xhvliðx� ~XliÞe�
rt
e li ; ~X � rvl

0

i i

� 1

4p

Z
S2

d~Xh e
rt
ð~X � rvliÞð1� e�

rt
e liÞ; ~X � rvl

0

i i �
1

4p

Z
Ci

dc
Z
ð~X�~nÞ>0

d~Xð~X �~nÞvliðcÞvl
0

i ðcÞ

þ 1

4p

Z
Ci

dc
Z
ð~X�~nÞ>0

d~Xð~X �~nÞvl0i ðcÞvliðc� ~XliÞe�
rt
e li

þ 1

4p

Z
Ci

dc
Z
ð~X�~nÞ>0

d~Xð~X �~nÞ e
rt
ð~X � rvliÞð1� e�

rt
e liÞvl0i ðcÞ: ð32Þ
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We have used the fact that ue;li ðx; ~XÞ ¼ 0 on Ci for entering directions ð~X �~nÞ < 0. We will now expand all

the terms in the right-hand side of (32) with respect to e. We denote by I1; . . . ; I7 the seven terms appearing

in the right-hand side of (32). We haveZ
S2

d~X~X ¼ 0 ) I2 ¼ 0:

As rvl
0
i is a constant vector, integral I3 can be rewritten as

I3 ¼ � 1

4p

Z
S2

d~X~X � rvl
0

i hveðx; ~XÞi;

where ve is solution of the transport equation

~X � rve þ rt
e v

e ¼ 0;

veðx; ~XÞ ¼ vliðxÞ; x 2 Ci; ~X �~n < 0:

(
ð33Þ

Integrating (33) on cell Ti, we obtain

hvei ¼ � e
rt

h~X � rvei ¼ � e
rt

Z
Ci

dcð~X �~nÞveðc; ~XÞ:

Hence

I3 ¼
1

4p
e
rt

Z
Ci

dc
Z
~X�~n<0

d~Xð~X � rvl
0

i Þð~X �~nÞvliðcÞ þ
1

4p
e
rt

Z
Ci

dc
Z
~X�~n>0

d~Xð~X � rvl
0

i Þð~X �~nÞvliðc� ~XliÞe�
rt
e li ;

which gives, using Lemma 1,

I3 ¼
e
6rt

Z
Ci

ð~n � rvl
0

i ÞvliðcÞ dcþOðe2Þ:

Since e�
rt
e li goes to zero as e goes to zero, we can take the limit in the integral term of I4:

I4 ¼ � e
rt

Z
S2

hð~X � rvliÞ � ð~X � rvl
0

i Þid~XþOðe2Þ

¼ � e
3rt

rvli � rvl
0

i Vi þOðe2Þ:

Integral I5 can be computed

I5 ¼ � 1

4p

Z
Ci

dc
Z
ð~X�~nÞ>0

d~Xð~X �~nÞvliðcÞvl
0

i ðcÞ ¼ � 1

4

Z
Ci

dcvliðcÞvl
0

i ðcÞ:

Integral I6 is a corner term: we apply Lemma 1

I6 ¼
e
rt

X3
k¼1

Ckv
l
iðcki Þvl

0

i ðcki Þ þOðe2Þ;

where Ck are some constant numbers and ðcki Þk¼1;2;3 are the three vertices of cell Ti. At last, taking the limit in

the integral term of I7 and using the lemma gives
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I7 �
e

4prt

Z
Ci

dc
Z
ð~X�~nÞ>0

d~Xð~X � nÞð~X � rvliÞvl
0

i ðcÞ þOðe2Þ

� e
6rt

Z
Ci

dcð~n � rvliÞvl
0

i ðcÞ þOðe2Þ:

Putting all these expansions together, Eq. (32) becomes

rt

e
h~ue;li ; vl

0

i i ¼
rt

e
hvli ; vl

0

i i �
1

4

Z
Ci

dcvliðcÞvl
0

i ðcÞ þ
e
rt

1

6

Z
Ci

ð~n � rvl
0

i ÞvliðcÞ dc
�

þ 1

6

Z
Ci

dcð~n � rvliÞvl
0

i ðcÞ
�
þ e
rt

 
� 1

3
rvli � rvl

0

i Vi þ
X3
k¼1

Ckv
l
iðcki Þvl

0

i ðcki Þ
!

þOðe2Þ: ð34Þ

As basis functions vli are polynomial of degree one, we have the identity

hrvli � rvl
0

i i ¼
Z
Ci

ð~n � rvl
0

i ÞvliðcÞ dc ¼
Z
Ci

ð~n � rvliÞvl
0

i ðcÞ dc: ð35Þ

So Eq. (34) simply writes as

rt

e
h~ue;li ; vl

0

i i ¼
rt

e
hvli ; vl

0

i i �
1

4

Z
Ci

dcvliðcÞvl
0

i ðcÞ þ
e
rt

X3
k¼1

Ckv
l
iðcki Þvl

0

i ðcki Þ þOðe2Þ: ð36Þ

We can now compute the matrix element me;l;l0

i;i ¼ be;l;l
0

i;i � ae;l;l
0

i;i :

me;l;l0

i;i ¼ 1

4

Z
Ci

dcvliðcÞvl
0

i ðcÞ þ erahvli ; vl
0

i i �
e
rt

X3
k¼1

Ckv
l
iðcki Þvl

0

i ðcki Þ þOðe2Þ: ð37Þ

(2) i 6¼ i0 and cells Ti and Ti0 have a common edge Ci0

i . For x 2 Ti0 , we have

ue;li ðx; ~XÞ ¼ ue;li ðxCi0
i
; ~XÞe�

rt
e li0 ; ð38Þ

where the point xCi0
i
is at the intersection of the boundary Ci0

i with the half-line starting from x with direction

�X and li0 ¼ li0 ðx;XÞ is the distance between that point and x (see Fig. 2). Using (31), we get

ue;li ðx; ~XÞ ¼ e�
rt
e li0 vliðx
�

� ~Xli0 Þ � vliðx� ~Xðli þ li0 ÞÞe�
rt
e li � e

rt

ð~X � rvliÞð1� e�
rt
e liÞ
�
: ð39Þ

Putting this expression into (30), we get, since hvli ; vl
0
i0 i ¼ 0:

rt

e
h~ue;li ; vl

0

i0 i ¼
1

4p

Z
S0

d~Xh~Xe�
rt
e li0vliðx� ~Xli0 Þ;rvl

0

i0 i �
1

4p

Z
S0

d~Xh~Xe�
rt
e li0 vliðx� ~Xðli þ li0 ÞÞe�

rt
e li ;rvl

0

i0 i

� 1

4p

Z
S0

d~Xh~Xe�
rt
e li0

e
rt

ð~X � rvliÞð1� e�
rt
e liÞ;rvl

0

i0 i

� 1

4p

Z
Ci0

dc
Z
S0

d~Xð~X �~nÞe�
rt
e li0 vliðc� ~Xli0 Þvl

0

i0 ðcÞ

þ 1

4p

Z
Ci0

dc
Z
S0

d~Xð~X �~nÞe�
rt
e li0 vliðc� ~Xðli þ li0 ÞÞe�

rt
e livl

0

i0 ðcÞ

þ 1

4p

Z
Ci0

dc
Z
S0

d~Xð~X �~nÞe�
rt
e li0

e
rt

ð~X � rvliÞð1� e�
rt
e liÞvl0i0 ðcÞ: ð40Þ



J.-F. Clou€et, G. Samba / Journal of Computational Physics 195 (2004) 293–319 307
Here S0 is the subdomain of S2 which corresponds to directions coming from Ti, i.e. ~X �~n < 0 on Ci0

i and
~X �~n > 0 on Ci0 � Ci0

i . We denote by I1; . . . ; I6 the six integrals appearing in the right-hand side of (40). We

now expand these terms with respect to e.
First integral writes as

I1 ¼
1

4p

Z
S0

d~Xð~X � rvl
0

i0 Þhvei;

where ve is solution of system (33). Integrating this equation on cell Ti0 , we get

I1 ¼ � e
rt

1

4p

Z
S0

Z
Ci0

dc d~Xð~X � rvl
0

i0 Þð~X � nÞveðc; ~XÞ

¼ � e
rt

1

4p

Z
~X�~n<0

Z
Ci0
i

dc d~Xð~X � rvl
0

i0 Þð~X � nÞvliðcÞ

� e
rt

1

4p

Z
~X�~n>0

Z
Ci0 �Ci0

i

d~Xð~X � rvl
0

i0 Þð~X � nÞvliðc� ~Xli0 Þe�
rt
e li0 :

We can apply Lemma 1 to

1

4p

Z
~X�~n>0

Z
Ci0 �Ci0

i

d~Xð~X � rvl
0

i0 Þð~X � nÞvliðc� ~Xli0 Þe�
rt
e li0

so that

I1 ¼ � e
6rt

Z
Ci0
i

ð~n � rvl
0

i0 ÞvliðcÞ þOðe2Þ:

Second integral writes as

I2 ¼ � 1

4p

Z
S0

d~Xð~X � rvl
0

i0 Þhwei;

where we is solution of

~X � rwe þ rt
e w

e ¼ 0;

weðx; ~XÞ ¼ vliðx� ~XliÞe�
rt
e li ; x 2 Ci0

i ;
~X �~n < 0:

(
ð41Þ

Integrating (41) on cell Ti0 , we obtain, for direction X in S0

I2 ¼
e
rt

1

4p

Z
~X�~n<0

Z
Ci0
i

dc d~Xð~X � rvl
0

i0 Þvliðc� ~XliÞe�
rt
e lidc

þ e
rt

1

4p

Z
~X�~n>0

Z
Ci0 �Ci0

i

dc d~Xð~X � rvl
0

i0 v
l
iðc� ~Xðli þ li0 ÞÞe�

rt
e ðliþli0 Þ dc:

So, using the lemma, I2 ¼ e
rt
CTðeÞ ¼ Oðe2Þ. Since e�

rt
e li0 goes to zero as e goes to zero, we conclude im-

mediately that I3 ¼ Oðe2Þ. The fourth term is defined as

I4 ¼ � 1

4p

Z
~X�~n<0

Z
Ci0
i

dc d~Xð~X �~nÞvliðcÞvl
0

i0 ðcÞ �
1

4p

Z
~X�~n>0

Z
Ci0 �Ci0

i

dc d~Xð~X �~nÞvliðc� ~Xli0 Þvl
0

i0 ðcÞe�
rt
e li0

¼ 1

4

Z
Ci0

dcvliðcÞvl
0

i0 ðcÞ �
e
rt

C0v
l
iðc0i;i0 Þvl

0

i0 ðc0i;i0 Þ
�

þ C1v
l
iðc1i;i0 Þvl

0

i0 ðc1i;i0 Þ
�
þOðe2Þ;
i
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where c0i;i0 and c1i;i0 are the common vertices of Ti and Ti0 and C0;C1 two constant numbers. The fifth integral

is defined as

I5 ¼
1

4p

Z
~X�~n<0

Z
Ci0
i

dc d~Xð~X �~nÞvliðc� ~XliÞe�
rt
e livl

0

i0 ðcÞ

þ 1

4p

Z
~X�~n>0

Z
Ci0 �Ci0

i

dc d~Xð~X �~nÞvliðc� ~Xðli0 þ liÞÞvl
0

i0 ðcÞe�
rt
e ðli0 þliÞ:

The lemma applies to both parts and we deduce that

I5 ¼
e
rt

C0
0v

l
iðc0i;i0 Þvl

0

i0 ðc0i;i0 Þ
�

þ C0
1v

l
iðc1i;i0 Þvl

0

i0 ðc1i;i0 Þ
�
þOðe2Þ:

At last, we have, taking the limit in the integral

I6 ¼
e

4prt

Z
~X�~n<0

Z
Ci0
i

dc d~Xð~X �~nÞð~X � rvliÞvl
0

i0 ðcÞ þ
e

4prt

Z
~X�~n>0

Z
Ci0 �Ci0

i

dc d~Xð~X �~nÞð~X � rvliÞvl
0

i0 ðcÞe�
rt
e li0

¼ e
6rt

Z
Ci0
i

ð~n � rvliÞvl
0

i0 ðcÞdcþOðe2Þ:

Putting all these expansions together, Eq. (40) becomes

rt

e
h~ue;li ; vl

0

i0 i ¼
1

4

Z
Ci0
i

dcvliðcÞvl
0

i0 ðcÞ þ
e
rt

 
� 1

6

Z
Ci0
i

ð~n � rvl
0

i0 ÞvliðcÞ þ
1

6

Z
Ci0
i

ð~n � rvliÞvl
0

i0 ðcÞ
!

� e
rt

C0v
l
iðc0i;i0 Þvl

0

i0 ðc0i;i0 Þ
�

þ C1v
l
iðc1i;i0 Þvl

0

i0 ðc1i;i0 Þ
�
þOðe2Þ:

The matrix element is now given by

me;l;l0

i;i0 ¼ � 1

�
� e2

ra

rt

�
rt

e
h~ue;li ; vl

0

i0 i

¼ � 1

4

Z
Ci0
i

dcvliðcÞvl
0

i0 ðcÞ �
e
rt

 
� 1

6

Z
Ci0
i

ð~n � rvl
0

i0 ÞvliðcÞ þ
1

6

Z
Ci0
i

ð~n � rvliÞvl
0

i0 ðcÞ
!

� e
rt

C0v
l
iðc0i;i0 Þvl

0

i0 ðc0i;i0 Þ
�

þ C1v
l
iðc1i;i0 Þvl

0

i0 ðc1i;i0 Þ
�
þOðe2Þ: ð42Þ

(3) i 6¼ i0 and cells Ti and Ti0 have no common vertex.

It is easy to see that a�i;i0 is exponentially decaying with respect to 1
e so that we can neglect these con-

tributions to the linear system.

(4) i 6¼ i0 and cells Ti and Ti0 have a common vertex ci
0
i but no common edge. Then ae;l;l

0

i;i0 itself is a corner

term. Suppose for example that a cell Tj is adjacent to Ti and Ti0 , then, for x 2 Ti0 , we have

ue;li ðx; ~XÞ ¼ e�
rt
e li0 e�

rt
e lj vliðx
�

� ~Xðli0 þ ljÞÞ � vliðx� ~Xðli0 þ lj þ liÞÞe�
rt
e li � e

rt

~X � rvlið1� e�
rt
e liÞ
�
:

In this case ae;l;l
0

i;i0 is a corner term corresponding to particles emitted in Ti, crossing a distance lj ¼ ljðx; ~XÞ
in Tj and a distance then li0 ¼ li0 ðx; ~XÞ in Ti0 (Fig. 3). It is easy to see, using Lemma 1, that

ae;l;l
0

i;i0 � e
Cvliðcl

0

i Þvl
0

i0 ðcl
0

i Þ:
rt
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Finally, neglecting the terms of order e2, the linear system for /e;l
i writes asX

l0

1

4

Z
Ci

dcvliðcÞvl
0

i ðcÞ
 

þ erahvli ; vl
0

i i �
e
rt

X3
k¼1

Ckv
l
iðcki Þvl

0

i ðcki Þ
!
/e;l0

i

þ
X
Ci0
i ;l

0

 
� 1

4

Z
Ci0
i

dcvliðcÞvl
0

i0 ðcÞ �
e
rt

1

6

Z
Ci0
i

ð~n � rvl
0

i0 ÞvliðcÞ
 

� 1

6

Z
Ci0
i

ð~n � rvliÞvl
0

i0 ðcÞ
!!

/e;l0

i0

þ e
rt

X
ci;i00 ;l

0
Ci00

i v
l
iðci;i00 Þvl

0

i00 ðci;i00 Þ/
e;l0

i00 ¼ ehQ; vlii; ð43Þ

where
P

Ci0
i ;l

0 stands for the sum over common edges Ci0

i of cells Ti and Ti0 and
P

ci;i00 ;l
0 stands for the sum over

common vertices between cells Ti and Ti00 . We now introduce the following formal expansion

Ue ¼ U0 þ eU1 þ e2U2 þ � � � ;
/e;l

i ¼ /0;l
i þ e/1;l

i þ e2/2;l
i þ � � � 8i 2 ð1;NÞ; 8l:

At the lowest order we obtainX
l0

1

4

Z
Ci

dcvliðcÞvl
0

i ðcÞ/
0;l0

i �
X
Ci0
i ;l

0

1

4

Z
Ci0
i

dcvliðcÞvl
0

i0 ðcÞ/
0;l0

i0 ¼ 0: ð44Þ

The solutions of this linear system are given by vectors /l
i corresponding to continuous functions, i.e.

vectors such that /0;l
i ¼ /0;l0

i0 when cli ¼ cl
0
i0 . These vectors obviously satisfy system (44) sinceZ

Ci

dcvliðcÞvl
0

i ðcÞ ¼
X
i0

Z
Ci0
i

dcvliðcÞvl
0

i ðcÞ

¼
X
i0

Z
Ci0
i

dcvliðcÞvl
0

i0 ðcÞ

because vl
0
i ðcÞ ¼ vl

0
i0 on Ci0

i . It also proves that /l
i is in the interior convex set of /l0

i0 hence that all these values

are equal.

At order e we haveX
l0

1

4

Z
Ci

dcvliðcÞvl
0

i ðcÞ/
1;l0

i �
X
Ci0
i ;l

0

1

4

Z
Ci0
i

dcvliðcÞvl
0

i0 ðcÞ/
1;l0

i0

¼ �ra

X
l0
hvli ; vl

0

i i/
0;l0

i � 1

6rt

X
Ci0
i ;l

0

 
�
Z
Ci0
i

ð~n � rvl
0

i0 ÞvliðcÞ þ
Z
Ci0
i

ð~n � rvliÞvl
0

i0 ðcÞ
!
/0;l0

i0

� 1

rt

X
ci;i00

Ci00

i v
l
iðci;i00 Þvl

0

i00 ðci;i00 Þ/
0;l0

i00 þ hQ; vlii:

This system can be split into two systems

P
l0

1
4

R
Ci
dcvliðcÞvl

0
i ðcÞ/

1;l0

i �
P

Ci0
i ;l

0
1
4

R
Ci0
i
dcvliðcÞvl

0
i0 ðcÞ/

1;l0

i0 ¼ 0

ra

P
l0 hvli ; vl

0
i i/

0;l0

i þ 1
6rt

P
Ci0
i ;l

0 �
R
Ci0
i
ð~n � rvl

0
i0 ÞvliðcÞ þ

R
Ci0
i
ð~n � rvliÞvl

0
i0 ðcÞ

� �
/0;l0

i0

þ 1
rt

P
ci;i00

Ci00
i v

l
iðci;i00 Þvl

0
i00 ðci;i00 Þ/

0;l0

i00 ¼ hQ; vlii:

8>>><
>>>: ð45Þ
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The first equation implies that U1 is continuous (i.e. /1;l
i ¼ /1;l0

i0 when cli ¼ cl
0
i0 ). The second equation will

provide a consistent discretization of the diffusion equation. For a given vertex cj we add all the equations

coming from cells i sharing vertex cj. For i; l such that cli ¼ cj, we denote

�/j ¼ �/cj
¼ /0;l

i and nj ¼ ncj ¼
X
cli¼cj

vli :

We obtain

ra

X
l0 ;cli¼cj

hvli ; vl
0

i i/
0;l0

i þ 1

6rt

X
Ci0
i ;l

0 ;cli¼cj

 
�
Z
Ci0
i

ð~n � rvl
0

i0 ÞvliðcÞ þ
Z
Ci0
i

ð~n � rvliÞvl
0

i0 ðcÞ
!
/0;l0

i0

þ 1

rt

X
ci;i0 ¼cj0 ;c

l
i¼cj

Ci0

i v
l
iðci;i0 Þvl

0

i0 ðci;i0 Þ/
0;l0

i0 ¼
X
cli¼cj

hQ; vlii:

In these sums index j is fixed and other indices l; l0; i; i0 and i00 take all possible values. We denote, re-

spectively, by S1; S2, S3 and S4 these four sums. We have for the first sum

S1 ¼ ra

X
l0
hnj; vl

0

i i/
0;l0

i :

The range of index l0 corresponds to all vertices cl
0
i that are connected to cj so that finally

S1 ¼ ra

X
cj0

hnj; nj0 i�/j0 :

Integration over edges can be separated into three parts (Fig. 4):

• The first part corresponds to indices l0 such that cli ¼ cj; cl
0
i0 ¼ cj0 ; Ci0

i ¼ cjcj0
��!. In this case, the triangles i

and i0 have the edge cjcj0
��! in common.

• The second part corresponds to indices l0 such that cli ¼ cj; c
l0
i0 ¼ cj0 ;C

i0

i 6¼ cjcj0
��! and there exists a vertex cj00

such that Ci0

i ¼ cj00 cj0
��!. In this case, the edge cjcj0

��! belongs to i but not to i0.
• The third part corresponds to indices l0 such that cli ¼ cj; c

l0
i0 ¼ cj0 ;C

i0

i 6¼ cjcj0
��! and there exists a vertex cj000

such that Ci0

i ¼ cjcj000
��!. In this case, the edge cjcj0

��! belongs to i0 but not to i.
Fig. 4.
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We have

S2 ¼
1

6rt

X
cl
0
i0 ¼cj0 ;c

l
i¼cj

�
�
Z

cjcj0
�!ð~n � rvl

0

i0 ÞvliðcÞ þ
Z

cjcj0
�!ð~n � rvliÞvl

0

i0 ðcÞ
!
�/j0

ðwhere i and i0 are cells with common vertices cj and cj0 including the case cj ¼ cj0 Þ

þ 1

6rt

X
cl
0
i0
¼cj0 ;c

l
i¼cj

 
�
Z
cj00cj0
��!ð~n � rvl

0

i0 ÞvliðcÞ þ
Z
cj00 cj0
���!ð~n � rvliÞvl

0

i0 ðcÞ
!
�/j0

ðwhere i and i0 are cells with common vertices cj00 and cj0 Þ

þ 1

6rt

X
cl
0
i0 ¼cj0 ;c

l
i¼cj

 
�
Z
cj000 cj
��!ð~n � rvl

0

i0 ÞvliðcÞ þ
Z
cj000 cj
��!ð~n � rvliÞvl

0

i0 ðcÞ
!
�/j0

ðwhere i and i0 are cells with common vertices cj000 and cjÞ:
We remark that vli ¼ 0 on cj00cj0
��! and vl

0
i0 ¼ 0 on cj000 cj

��!. So we finally have
S2 ¼
1

6rt

X
cl
0
i0
¼cj0 ;c

l
i¼cj

�
�
Z

cjcj0
�!ð~ni � rvl

0

i0 ÞvliðcÞ þ
Z

cjcj0
�!ð~ni � rvliÞvl

0

i0 ðcÞ
!
�/j0

þ 1

6rt

X
cl
0
i0 ¼cj0 ;c

l
i¼cj

Z
cj00cj0
��!ð~ni � rvliÞvl

0

i0 ðcÞ�/j0 �
1

6rt

X
cl
0
i0 ¼cj0 ;c

l
i¼cj

Z
cj000 cj
��!ð~ni � rvl

0

i0 ÞvliðcÞ�/j0 ; ð46Þ
where index i on~ni reminds that ni is exterior to cell Ti. We can identify hrnj � rnj0 i in this sum. For j0 fixed
(j0 6¼ j), we have

hrnj � rnj0 i ¼
Z
Ti

rnj � rnj0 dxþ
Z
Ti0

rnj � rnj0 dx;

where Ti is the cell ðcj; cj0 ; cj00 Þ and Ti0 is the cell ðcj; cj0 ; cj000 Þ. We have, for cli ¼ cj and cl
0
i ¼ cjZ

Ti

rnj � rnj0 dx ¼
1

2

Z
cjcj0
��!ð~ni � rvliÞvl

0

i dc

 
þ
Z
cj0cj00
��!ð~ni � rvliÞvl

0

i dcþ
Z
cjcj00
�!ð~ni � rvliÞvl

0

i dc

!

þ 1

2

Z
cjcj0
��!ð~ni � rvl

0

i Þvlidc
 

þ
Z
cj0cj00
��!ð~ni � rvl

0

i Þvlidcþ
Z
cjcj00
�!ð~ni � rvl

0

i Þvlidc
!
:

On cjcj00
��!, we have vl

0
i ¼ 0, on cjcj0

��!, we have vl
0
i ¼ vl

0
i0 and on cj0cj00

��! we have vli ¼ 0 so

Z
Ti

rnj � rnj0 dx ¼
1

2

Z
cjcj0
��!ð~ni � rvliÞvl

0

i0dc

 
þ
Z
cj0cj00
��!ð~ni � rvliÞvl

0

i dc

!

þ 1

2

Z
��!ð~ni � rvl

0

i Þvli0dc
 

þ
Z
�!ð~ni � rvl

0

i Þvlidc
!
:

cjcj0 cjcj00
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Similarly,Z
Ti0

rnj � rnj0 dx ¼
1

2

Z
cjcj0
��!ð~ni0 � rvli0 Þvl

0

i dc

 
þ
Z
cj0cj000
���!ð~ni0 � rvli0 Þvl

0

i0dc

!

þ 1

2

Z
cjcj0
��!ð~ni0 � rvl

0

i0 Þvlidc
 

þ
Z
cjcj000
��!ð~ni0 � rvl

0

i0 Þvli0dc
!
:

Noticing that ~ni0 ¼ �~ni on cjcj0
��!, we put this expression into (46) and we obtain

S2 ¼
1

3rt

X
j0
hrnj � rnj0 i�/j0:

The sum S3 contains corner terms (we recall that these terms only appear in the two-dimensional case). To

avoid lengthy calculations, we will only give a heuristic argument why they vanish. When adding all the

contributions coming from a given vertex, due to the continuity of U0 at vertices and the fact that vliðcjÞ ¼ 1

or 0, we find that

S3 ¼
X

ci;i0 ¼cj0 ;c
l
i¼cj

Ci0

i v
l
iðci;i0 Þvl

0

i0 ðci;i0 Þ�/j0 ¼
X
ci;i0 ¼cj

Ci0

i

0
@

1
A�/j:

Using Lemma 1, we are reduced to make a sum of the form

S ¼
X
i;i0

Z
Si0

i

~ni � ~X
Ci0

i ð~XÞ
d~X:

When performing the sum over all cells ði; i0Þ sharing vertex cj, the integration takes place over all sphereS2

and S vanishes.

Finally, we have immediately S4 ¼ hQ; nji and U0 satisfies

ra

X
j0
hnj; nj0 i�/j0 þ

1

3rt

X
j0
hrnj � rnj0 i�/j0 ¼ hQ; nji:

As ue ¼ Ue þOðe2Þ, this ends the proof. �

3.3. Boundary conditions for linear SIMC

So far, we have only considered zero boundary conditions. We should now extend previous results to
arbitrary incoming fluxes. Actually it is not possible to perform a complete analysis and we have only

obtained partial results. We describe now these results without proofs:

3.3.1. One-dimensional case

• If ra ¼ 0, we obtain a correct discretization of the diffusion equation with Dirichlet boundary condition

~/0 ¼
Z 1

0

l

�
þ 3

2
l2

�
gð0; lÞ dl �

Z 1

0

ffiffiffi
3

p

2
lHðlÞgð0; lÞ dl;

where HðlÞ is the Chandrasekhar function. This is the case for radiative transfer problems.

• If ra 6¼ 0, we do not get the exact boundary condition: it would be necessary to lump some terms in the
Monte-Carlo matrix.
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3.3.2. Multidimensional case

In the simplest case where the incoming flux g is an isotropic function and g is continuous and piecewise

linear on the boundary, we obtain the correct Dirichlet condition. In the most general case (i.e. non iso-
tropic incoming flux), it does not seem possible to state a general result.

3.4. Choice of the basis functions

In the view of the asymptotic analysis, we have seen that the solution becomes continuous in the dif-

fusion limit. Hence, we could use linear continuous basis function instead of a discontinuous one and

obtain the same result. The benefit would be a smaller linear system and a reduced computational cost.

However, in the general case, there is no reason to assume continuity of the solution and a discontinuous
basis function is required as it is in deterministic transport methods.
4. Numerical results

4.1. e problem test case

We first confirm the theoretical results presented in previous section. We consider the following pure
scattering problem in one dimension:

l oue

ox þ 1
e u

e ¼ 1
e ~u

e þ e; x 2 ð0; 10Þ; l 2 ð�1; 1Þ;
ueð0; lÞ ¼ 0 for l > 0; ueð10; lÞ ¼ 0 for l < 0:

(
ð47Þ

As � goes to zero, we know that ~ue tends to the solution U of the diffusion equation:

� 1
3

d2U
dx2 ¼ 1;

Uð0Þ ¼ 0; Uð10Þ ¼ 0:

(
ð48Þ

i.e. UðxÞ ¼ 15x� ð3=2Þx2.
First, we compare the solutions for linear and constant SIMC with the exact solution of the diffusion

equation in one-dimensional geometry. The mesh is composed of 100 cells of size Dx ¼ 1. We set e ¼ 0:01 so
that the optical depth of each cell is 10: this is large enough to apply the theoretical results.

In Fig. 5, we represent solution for constant SIMC, solution of the diffusion (48) and solution of the

wrong diffusion limit problem

� d2V e

dx2 ¼ 4e
Dx ;

V ð0Þ ¼ 0; V ð10Þ ¼ 0:

(
ð49Þ

As long as Dx=e is large enough, we observe that the Constant SIMC solution is much closer to V e than to
U : this confirms the theoretical results.

In Fig. 6, we represent the linear SIMC solution and U : The agreement between the linear SIMC and U
is correct but we observe fluctuations despite the large number of particles emitted in each cell (500,000):

this is related to the difficulty of calculating the coefficients of the matrix accurately with a random choice.

When performing the asymptotic analysis, we found that diffusion-like scheme appeared at order e and that

terms of order e�1 and order e0 cancel. In the Monte-Carlo simulation, these terms cannot cancel exactly



Fig. 5. Solution of constant SIMC, correct limiting diffusion solution, wrong limiting diffusion equation.

Fig. 6. Solution of linear SIMC and limiting diffusion solution.
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and there is some remaining Monte-Carlo fluctuation which has to be of an order smaller than e to obtain

the diffusion solution. These fluctuations could be reduced by using adapted sampling of the emitted

Monte-Carlo particles in each cell, for example we could sample Monte-Carlo particles for each basis

function instead of each cell and use biasing of the position. Anyway, it would not be sufficient for very

diffusive problems. Although the problem is one-dimensional, we can solve it on a two-dimensional tri-

angular mesh ðx; yÞ 2 ð0; 10Þ � ð0; hÞ with symmetric boundary conditions for y ¼ 0 and y ¼ h. We took

h ¼ Dx so that the aspect ratio of each triangle is of order 1. Results are displayed in Fig. 7: as expected
from the theoretical analysis Constant SIMC results are wrong whereas Linear SIMC results are correct.

We observe however larger fluctuations than for one-dimensional geometry.



Fig. 7. Solution of linear SIMC, constant SIMC and limiting diffusion solution for two-dimensional mesh.
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4.2. Larsen test case

This problem is presented in [7]. We solve

l ou
ox þ rtu ¼ rs~u; x 2 ð0; 11Þ; l 2 ð�1; 1Þ;

uð0; lÞ ¼ 1 for l > 0; uð11;lÞ ¼ 0 for l < 0;

rt ¼ 2; rs ¼ 0; 06 x < 1;

rt ¼ 100; rs ¼ 100; 16 x < 11:

8>>><
>>>: ð50Þ

First region 0 < x < 1 is purely absorbing with a moderate absorption coefficient whereas second region

1 < x < 11 is purely scattering with a large scattering coefficient. Hence particles coming from the left

boundary do not suffer any scattering in the first region x 2 ð0; 1Þ and their distribution becomes aniso-
tropic at the interface x ¼ 1. A boundary layer results at the interface between the two regions. There is no

analytic solution to this problem so we used, as a reference, the solution given by a DSN calculation S16 on

a very fine mesh.

Fig. 8 compares the reference solution with the solutions given by the linear SIMC method and the

constant SIMC solution on a crude mesh (10 cells of size Dx ¼ 0:1 for 0 < x < 1 and 10 cells of size Dx ¼ 1

for 1 < x < 11). The results show that the linear SIMC method is very accurate in presence of a not resolved

boundary layer except in the first cell in the opaque medium. The constant SIMC result is not as much

accurate. This is not surprising since we have found that the anisotropy of the incident intensity in the
opaque medium is not taken into account with this method.

With the constant SIMC method, the incident current (
R 1

0
luð1; lÞ dl) in the opaque medium determines

entirely the value of ~u inside the opaque medium.

4.3. Problems with non-isotropic incident flux

We solve

l ou
ox þ 100u ¼ 100~u; x 2 ð0; 1Þ; l 2 ð�1; 1Þ;

uð0; lÞ ¼ gðlÞ for l > 0; uð1; lÞ ¼ 0 for l < 0:

�
ð51Þ



Fig. 8. Comparison between linear and constant SIMC solutions and reference solution.
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The left boundary l7!gðlÞ condition is an anisotropic incident intensity:

• In the first case, it is an almost normal intensity (see Fig. 9)

glðlÞ ¼ dðl� 1Þ:

• In the second case, it is an almost grazing incident intensity (see Fig. 10)

glðlÞ ¼ dðl� 1=100Þ:

In the two cases, glðlÞ is normalized so that
R 1

0
lglðlÞ dl ¼ 0:5 is kept constant.

With these two cases, we want to verify our analysis of the boundary conditions in an opaque medium

for the linear SIMC and the constant SIMC methods:
Fig. 9. Normal incident intensity problem, comparison between SIMC (linear and constant) and asymptotic one.



Fig. 10. Grazing incident intensity problem, comparison between SIMC (linear and constant) and asymptotic one.
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• The linear SIMC method yields a very accurate boundary condition even if the boundary layer is unre-

solved Uð0Þ ¼
R 1

0
ðlþ ð3=2Þl2ÞglðlÞ dl.

• The constant SIMC method is accurate only if the medium is meshed at the mean free path scale. If the

boundary layer is not resolved, the boundary condition is Uð0Þ ¼
R 1

0
2lglðlÞ dl that is Uð0Þ ¼ 1.

We compare the SIMC results obtained on a crude mesh (10 cells between 0 and 1, optical thickness per

cell 10) with the reference results given by the asymptotic diffusion equation: it is a linear function taking

the values y ¼ 0 at x ¼ 1 and y ¼
R 1

0
ð
ffiffiffi
3

p
=2ÞlHðlÞgð0;lÞ dl at x ¼ 0 (it gives approximately the values

y ¼ 1:25 for the normal incidence case and y ¼ 0:5075 for the grazing incidence case).

4.4. Error analysis

We wish now to discuss the benefits of linear SIMC versus constant SIMC in a transparent medium. In
this case, away from the diffusion limit, constant SIMC is simply less accurate than linear SIMC due to the

constant representation of the solution. We study the convergence of the method on a non-diffusive

problem when the mesh size goes to zero.

We solve

l ou
ox þ rtu ¼ rs~uþ QðxÞ; x 2 ð0; 1Þ; l 2 ð�1; 1Þ;

uð0; lÞ ¼ 0 for l > 0; uð1; lÞ ¼ 0 for l < 0;

rt ¼ 14; rs ¼ 4; 06 x < 0:5;

rt ¼ 1; rs ¼ 1; 0:56 x < 1

QðxÞ ¼ 10 for x 2 ð0:4; 0:6Þ:

8>>>>><
>>>>>:

ð52Þ

The problem is solved on a two-dimensional mesh with symmetric boundary conditions for y ¼ 0 and

y ¼ Dx. The mesh size Dx varies from 0.1 to 0.0125. At each time the mesh size is divided by 2, we also

multiply by 4 the number of particles tracked so that we keep the error due to Monte-Carlo fluctuations
lower than the error due to spatial discretization (number of particles is set to 107 for Dx ¼ 0:1). The
reference solution is given by a DSN calculation on a very fine mesh. Fig. 11 compares the linear and

constant SIMC solutions on the crudest mesh with the reference solution.



Fig. 11. Linear and constant SIMC, reference solution.
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We now represent the L1 error between SIMC solution and reference solution as a function of the mesh

size (Fig. 12). We observe that the error goes to zero as the mesh size diminishes and that it is smaller for
linear SIMC than for constant SIMC. We cannot directly conclude about the order of the method from this

single example. It seems however that constant SIMC is of order one with respect to the mesh size.

The extra CPU time due to the linear SIMC method versus constant SIMC method is moderate. Ac-

tually the main part of time is spent during the tracking of particles which is the same in both methods: in

constant SIMC method each particle has one single symbolic weight whereas in linear SIMC it represents 2,

3 or 4 weights (according to the dimension of the problem and number of degree of freedom in each cell).

Hence, in this kind of non-diffusive problem, there is no clear benefit in using linear SIMC instead of

constant SIMC (a little more accurate but a little more expensive): the situation is of course completely
different for a diffusive problem.
Fig. 12. L1 error as a function of mesh size.
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5. Conclusions

In this paper, we have analyzed and numerically demonstrated the behavior of the Symbolic Implicit
Monte-Carlo method in opaque media. We have introduced an extension of standard SIMC method where

the solution is linear in each cell instead of being constant.

We have proven that constant SIMC method does not possess the diffusion limit and that linear SIMC

method does possess the diffusion limit. The limiting diffusion scheme is realized with the linear continuous

finite element method. Analysis was performed in an arbitrary number of dimensions. The analysis of the

boundary conditions is not complete. In the one-dimensional case, the asymptotic boundary condition is a

very accurate approximation of the exact one. In higher dimensions, this result cannot be proven. However,

we have proven the boundary condition is correct when incident intensity is isotropic.
Although the linear SIMC method is accurate in an opaque medium, it requires a huge number of

Monte-Carlo particles. Otherwise large order Monte-Carlo fluctuations hide the correct solution. This is

due to difficulty of calculating the coefficients of the diffusion matrix by the Monte-Carlo method. Hence

cost could become prohibitive for a real application.

It could be possible to consider an improvement of the method which consists in computing analytically

the matrix terms in diffusive regions. This would be equivalent to an hybrid Monte-Carlo Diffusion method.
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